RF-POWERED TURNKEY NEGATIVE ION SOURCE SYSTEM
ISV.RF-040
TRIUMF & University of Jyväskylä licensed¹, volume-cusp

- Long intervals between maintenance² (1 year) – no filaments to replace
- RF powered - no metal sputtering due to filaments (important for ion implantation)
- Ability to pulse beam
- Extensive beam instrumentation options

SPECIFICATION: ISV.RF-040

<table>
<thead>
<tr>
<th>ION SOURCE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle</td>
<td>H⁺, D⁻, C₂⁻, C₂H⁻, C₂H₂⁻</td>
</tr>
<tr>
<td>Beam Kinetic Energy</td>
<td>20 to 30 keV</td>
</tr>
<tr>
<td>Normalized arms Emittance</td>
<td>< 0.7 mm×mrad</td>
</tr>
<tr>
<td>Beam Purity</td>
<td>> 99%</td>
</tr>
<tr>
<td>RF Window Lifetime¹,²</td>
<td>> 1 year</td>
</tr>
<tr>
<td>Beam Current Stability³</td>
<td>± 1% over 24 hours</td>
</tr>
<tr>
<td>Beamline Flange</td>
<td>ISO 100</td>
</tr>
<tr>
<td>Instrument Port</td>
<td>ISO 250</td>
</tr>
</tbody>
</table>

POWER SUPPLIES

- Max Bias Supply: 40 mA, 30 keV
- RF Amplifier⁴,⁵: 3 kW, 13.56 MHZ
- Plasma Lens: 12 A, 70 V
- Extraction Lens: 60 mA, 5 kV
- X & Y Steering Magnet: 10 V, 10 A

VACUUM SYSTEM SPECIFICATIONS

- Turbo Pumps, 1X Upstream & 1X Downstream: 1700 l/s Flange ISO250F
- Dry Scroll Roughing, 1X Upstream & 1X Downstream: 35 m³/hr

GAS FLOW

- Mass Flow Controller: 11-30 sccm

CONTROLS

- Control PLC: Phoenix Contact ILC, Ethernet
- User Interface Options: D-Pace standalone or OPC command library for customer integration

COOLING WATER, DEIONIZED, 20°C (> 1.0 MOhm.cm)

- XY Steering Magnet: 1.0 LPM, 70 PSI (480 kPa)
- Turbo Pumps: 2.0 LPM, 70 PSI (480 kPa)
- COOLING WATER, DEIONIZED, 20°C (> 1.0 MOhm.cm)

- Source Body: 5.0 LPM, 40 PSI (275 kPa)
- RF Amplifier: 5.0 LPM, 40 PSI (275 kPa)
- RF Antenna: 1.0 LPM, 70 PSI (480 kPa)
- RF Window: 1.5 LPM, 70 PSI (480 kPa)
- Plasma Lens: 1.5 LPM, 70 PSI (480 kPa)
- Extraction Lens: 1.5 LPM, 70 PSI (480 kPa)
- Faraday Cup: 5.0 LPM, 40 PSI (275 kPa)

ION	BEAM CURRENT (mA)	BEAM ENERGY (keV)
H⁺ | 0-7.5 | 20-30 |
D⁻ | 0-3 | 20-30 |
C₂⁻ | 0-0.05 | 20-30 |
C₂H⁻ | 0-0.05 | 20-30 |
C₂H₂⁻ | 0-0.05 | 20-30 |

Beam Intensities for Various Ions

RF window (L) and antenna (R), shown separated
TUNE DATA FOR MAXIMUM BEAM CURRENT:

<table>
<thead>
<tr>
<th></th>
<th>IONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Beam Current (mA)</td>
<td>8 3 0.05 0.05 0.02</td>
</tr>
<tr>
<td>Bias Supply (mA, kV)</td>
<td>11, 30 4.5, 30 0.68, 10 0.68, 10 0.68, 10</td>
</tr>
<tr>
<td>RF Power (kW)</td>
<td>3.1 2.6 0.5 0.5 0.5</td>
</tr>
<tr>
<td>Plasma Lens Supply (A,V)</td>
<td>5.9, 36 5.3, 50 1.0, 0 1.0, 0 1.0, 0</td>
</tr>
<tr>
<td>Extraction Lens Supply (mA, kV)</td>
<td>34, 3.0 39, 2.3 14, 1.2 14, 1.2 14, 1.2</td>
</tr>
<tr>
<td>Steering Magnet X (A)</td>
<td>0.5 3.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>Steering Magnet Y (A)</td>
<td>3.2 0.0 0.0 0.0 0.0</td>
</tr>
<tr>
<td>H₂ (sccm)</td>
<td>16 9 30 30 30</td>
</tr>
<tr>
<td>Vacuum, Ion Source (Upstream) (10⁻⁴ Torr)</td>
<td>0.54 0.32 1.06 1.06 1.06</td>
</tr>
<tr>
<td>Vacuum, V-Box (Downstream) (10⁻⁵ Torr)</td>
<td>0.39 0.082 3.30 3.30 3.30</td>
</tr>
<tr>
<td>½ Beam Diameter at Waist (mm)</td>
<td>1.8 2.1 3.7 3.7 3.7</td>
</tr>
<tr>
<td>½ Beam Divergence at Waist (mrad)</td>
<td>37.8 53.3 41.7 41.7 41.7</td>
</tr>
<tr>
<td>Geometric 4rms Emittance (mm-mrad)</td>
<td>69 112 154 154 154</td>
</tr>
<tr>
<td>Normalized 4rms Emittance (mm-mrad)</td>
<td>0.89 0.89 0.71 0.71 0.71</td>
</tr>
</tbody>
</table>

The ISV.RF-040 Ion Source system includes the following:
- Ion source & vacuum box
- Vacuum system & gauges
- Power supplies, PLC controls & software
- Low voltage and high voltage racks
- 40 kV isolation transformer
- Interlocks and HV grounding system
- User interface & Ethernet-based remote controls
- Ion source stand and RF stand
- Personnel access control interlocks
- Water flow gauges and interlocks
- Mass flow controller for feed gases
- RF amplifier & impedance matching systems

Optional:
- High-voltage Faraday cage / enclosure
- Water de-ionization and cooling system
- Sliding Faraday cup
- UniBEaM fiber optic beam profile monitor
- TRIUMF-licensed emittance scanner
- 1:500 mass spectrometer with slits

Enquire about other negative and positive ion beams, and our Filament ion sources

1. Ion Source licenced from TRIUMF. RF technology licenced from the University of Jyväskylä.
2. Estimates - testing in progress.
3. Window lifetime estimate based on 10% RF transmission degradation.
4. Suitable for installation of optional pneumatically-actuated Faraday cup and D-Pace ES-4 Allison type emittance scanner.
5. 5kW amplifier recommended for beam currents > 5mA.
6. RF Amplifier can be installed in the RF as rack shown or installed remotely.
7. D-Pace reserves the right to update specifications as part of its ongoing product improvement program.